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Abstract 

Contrary to common belief, reliability estimates of number-right multiple-choice tests are not 

inflated by speededness. Because examinees guess on questions when they run out of time, the 

responses to these questions show less consistency with the responses of other questions, and the 

reliability of the test will be decreased. The surprising implication is that adding questions to a 

multiple-choice test may lower its reliability when the test is speeded. This paper develops the 

mathematical derivations and shows the effects of speededness on reliability in simulations.  
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Introduction 

In their introduction to test theory, Crocker and Algina (1986) describe the effects of time 

limits on the reliability of power tests: 

When a test has a rigid time limit such that some examinees finish but others do not, an 

examinee's working rate will systematically influence his or her performance on all forms 

of the test. . . . On [power] types of tests, time limits should be long enough to allow all, 

or nearly all, examinees to finish. Otherwise, the reliability estimate may be artificially 

inflated because of consistencies in performance caused by the test's time limit. (p. 145) 

This argument for inflated reliability estimates is best presented with the odd-even split-

half procedure for estimating reliability. For example, Crocker and Algina (1986, p. 145) note 

that “Once an examinee runs out of time, performance on all remaining uncompleted odd- and 

even-numbered items will be perfectly consistent.” However, this argument holds only if, indeed, 

items that are not reached are also omitted by examinees. With multiple-choice (MC) tests that 

do not have correction for guessing (i.e., are scored as number-right), examinees may earn some 

points by guessing the answers to the remaining items, those that were not reached. With these 

guessed answers there will be no consistency in performance, because these responses reflect no 

knowledge, but some of them will be correct nonetheless.  

Intuitively, it is not plausible that reliability estimates will be inflated by these random 

responses. Yet, psychometric textbooks do not refer to this possibility in their analysis of the 

effects of a speed component on reliability estimates (e.g., Anastasi & Urbina, 1997; Crocker & 

Algina, 1986; Gulliksen, 1950; Lord & Novick, 1968; Stanley, 1971; Traub, 1994).  

Take, for example, Gulliksen’s (1950) discussion of this topic. Gulliksen makes a 

thorough analysis of speed versus power tests, but implicitly assumes a test with no opportunity 

to successfully guess the answer of items. Gulliksen’s (p. 230) distinction between speed and 

power tests is based on the decomposition of total error score, X, to W (number of wrong 

answers) and U (number of not reached answers). In Gulliksen’s discussion a “pure speed” test is 

a test where W will be zero for each examinee, hence X = U, and a “pure power” test is a test 

where U is zero for each examinee, and, hence, X = W. However, for a MC test in which 

examinees who run out of time randomly guess the answer to the questions that were not 

reached, U will be zero, even though the test is actually speeded. Thus, the decomposition of the 

 1



 

error score into W and U does not distinguish between speeded and nonspeeded MC tests, when 

examinees guess the answers to the items they did not reach.  

Despite the fact that many tests use MC items, the psychometric literature did not seem to 

acknowledge this effect of random guessing on the reliability of speeded tests. The purpose of 

this paper is to provide a theoretical account of the effects of speededness on reliability of MC 

power tests, and to support this account with simulation data.  

The Effect of Random Guessing on the Performance of a Single Item 

Following Schnipke and Scrams (1997) and Yamamoto (1995), it is assumed that 

examinees choose to engage in either solution behavior or rapid-guessing behavior in answering 

each item. Because examinees spend very little time on the item in rapid-guessing, their answers 

may be characterized as random guessing, and the probability of a correct answer for these 

responses can be assumed to be 1/k, where k is the number of options for the MC item. This 

assumption is obviously a simplification of the actual process that examinees are experiencing. 

In real life, examinees might experience more and more time-related pressure and react by 

gradually shortening the time they spend on each item (and gradually lowering their probability 

of answering correctly). Because the research on this issue is very limited, it is difficult to 

determine the correctness of this two-state assumption. However, Schnipke and Scrams (1997) 

were successful in modeling item response times with such a two-state mixture model. The two-

state assumption is plausible because examinees know in advance that the time limits of a 

particular test are very strict. Consequently, the time pressure they feel in speeded tests is 

reasonably high from the start of the test, and towards the end of the test, examinees find 

themselves unable to solve items even more rapidly.  

A useful way to analyze the effect of random guessing on internal consistency measures 

of reliability is to concentrate on the item level. The following discussion will show that when 

some of the examinees are not answering an item and instead engage in rapid-guessing, scores on 

this item are less correlated with other measures of performance, either another item in the test or 

the test as a whole. The analysis is based on the observation that when examinees are randomly 

guessing the answer to an item, their responses will, by definition, be independent and 

uncorrelated with their responses to any other item.  

It should be noted that the decrease in correlations would occur only insofar as response 

time is indeed irrelevant to the trait being tested, as is assumed for power tests. When differences 
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in speed of response are positively correlated with differences in the trait being measured (e.g., 

perceptual speed tests), the speed component might not lower these correlations. However, the 

effects of moderate correlations between speed and performance will be examined.  

First, it will be shown that the correlation between a partially speeded item and any other 

item is decreasing more or less linearly with the rate of random responding for the partially 

speeded item. The following derivations will examine the correlations between the 

(dichotomous) responses to an arbitrary item i, a completely unspeeded item j, a completely 

speeded item g, and a partially speeded item k. The correlation coefficient (the phi coefficient) 

between the arbitrary item i and the unspeeded item j is given by 

 

jjii

jiij
ij qpqp

ppp −
=φ , 

 

where pij is the joint proportion of examinees answering both items correctly, pi and pj are the 

proportions of correct responses for the items, qi and qj are the proportions of incorrect responses 

for the items.  

For an item g that is completely speeded, that is, all examinees are randomly responding 

to it, pg is equal to one over the number of options. Moreover, because all examinees are 

randomly responding to this item, the responses to this item are independent of the responses to 

any other item, and the joint proportion of correct answers to this item and any other item i, pig, 

is equal to the product of the marginal proportions pipg, and consequently φig is equal to 0.  

For an item k that is partially speeded, it will be assumed that its difficulty for examinees 

engaged in solution behavior is equal to the difficulty of the unspeeded item j (in other words, if 

k would not be partially speeded, its difficulty would be the same as j). For this item k, A% of 

examinees are answering the item and G% are randomly guessing the answer (G = 1 – A). The 

proportion of correct responses for this item is a weighted average of the proportions of correct 

answers for the unspeeded item j and the completely speeded item g: 

 

gjk GpApp += . 
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Similarly, the joint proportion of examinees answering both items i and k correctly is a 

weighted average of the joint proportions of correct answers for items i and j and for items i and g: 

 

giijigijik pGpApGpApp +=+= . 

 

As was previously indicated, the joint proportion of correct answers to items i and g is 

equal to the product of the marginal proportions for these items. The correlation between items i 

and k is given by: 
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Finally, in most cases the variance of item k (pkqk) can be approximated with that of item 

j (pjqj) because the effect of guessing on the variance of item k is small and inconsistent. For 

example, if G = .2 and j is an easy item (pj = .8), the variance of item j is equal to .16 and the 

variance of item k is equal to .22. If j is a moderately difficult item (pj = .6), the variance of item 

j is equal to .24 and the variance of item k is equal to .25. If j is a difficult item (pj = .4), the 

variance of item j is still equal to .24 and the variance of item k is equal to .23. In summary, 

except for very easy items the variance of item k is similar to the variance of item j and 

consequently, the correlation between item i and item k is approximately equal to A times the 

correlation of item i and item j: 
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If the original item j is easy (high percentage correct) then this approximation is actually 

an overestimate, whereas for a difficult item this is a slight underestimate. As an example, the 

case where pij is equal to 40% and both pi and pj are equal to 50% results in a φij of 0.20. When 

some of the examinees are randomly responding to item j, transforming it to a partially speeded 
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item k, φik is decreased almost linearly. Figure 1 shows the actual values of φik together with the 

linear decrease line.  
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Figure 1. φik as a function of percentage of random guessing. 

 
This approximate linear decrease in the correlation of a speeded item with another item 

will have a similar effect on the (point-biserial) correlation of the partially speeded item with the 

total test score, because an item’s point-biserial is closely related to its inter-item correlations. 

Gulliksen (1950, p. 376) shows that the sum of the terms in any column (or row) of the inter-item 

variance-covariance matrix is the covariance between that item and the total test score. For every 

item i,  

 

)1(
1
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=

ii

N

j
jiijxiix ρσσρσσρ , 

 

where ixρ  is the point-biserial between item i and total score x, and xσ  is the standard deviation 

of test scores. The point-biserial of item i is then given by 
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Inspection of this last equation and the previous discussion suggests that increasing the 

speededness of item i will primarily have an effect on inter-item correlations (approximately 

linearly), and will have little effect on the standard deviation of the speeded item or of the test 

scores (especially if the number of test items is reasonably large). Consequently, the effect of 

speededness on the point-biserial of a partially speeded item can also be assumed to be 

approximately linear. 

Adding an Item Without Increasing Reliability 

These effects, in turn, will have a negative effect on the internal consistency measures of 

reliability for the test. When a single speeded item is added to a test, this effect may be very 

small and depends on many factors. However, another interesting question could be answered in 

more general terms: What is the percentage of random guessing for the added item that will 

make the new reliability estimate, with the added item, the same as the reliability of the test 

without the speeded item? In other words, what is the equilibrium point of the guessing rate 

where the noise introduced by guessing on an item cancels the effect of adding the item to a test? 

Coefficient alpha for a test with n items depends on the number of items, the sum of item 

variances, and score variance: 
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Score variance, in turn, is equal to the sum of the elements in the variance-covariance 

matrix: 

 

ijiNx nnn σσσ )1(22
)( −+= . 
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The first term is the sum of the item variances on the main diagonal, and the second term 

is the sum of all covariances (σij) between any two different items i and j in the matrix. When a 

partially speeded item is added to the test the new test variance is approximately equal to: 

 

ijijiNx nAnnn σσσσ 2)1()1( 22
)1( +−++≅+ . 

 

The approximation is based on the results of the previous section. The first term is the 

sum of the item variances, and it is assumed that the new item variance is equal to the average of 

all previous items. The second term is the sum of the old item covariances (here nothing is 

assumed). The third term is the sum of the new 2n covariances associated with the new item (the 

last row and column of the new covariance matrix, without the element on the main diagonal). 

The result from the previous section can be used here: that the correlation between the new 

partially speeded item and any other item is decreased by a factor of A, the percentage of 

examinees answering (and not guessing) the last item. To summarize, the derivation of the new 

score variance assumes that the new item has about the same item variance as other items and 

that its correlation with other items is reduced to about A times the typical correlation between 

any two items.  

Coefficient alpha for the new test is given by: 
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The question is now whether the relation between coefficient alpha for n items and 

coefficient alpha for n+1 items can be expressed in terms of A, the proportion of examinees 

answering, and not guessing, the new item. With some algebra it can be shown that if the two 

ratios between the sum of item variances and score variance are equal, then the following 

equation about A also holds: 
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And, following this, if the two coefficient alphas are equal then the following inequalities 

about A and G holds, too: 
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The meaning of this inequality is that a little more than a 50% rate of guessing for the 

added item is, at most, the degree of speededness for which the coefficient alpha of the test 

including the speeded item will be equal to the coefficient alpha without that item (for n = 20 this 

rate is 55%, and for n = 50 this rate is 51%). In other words, when an item is added to a test and 

more than 50% of the examinees are forced to randomly guess the answer to this item because 

they do not have enough time left, the addition of that item may lower the internal consistency 

measure of reliability for this test.  

Table 1 shows several computed examples of the equilibrium point of rate of guessing 

(G) of the new added item for which the new alpha for n+1 items will be equal to the old alpha 

with n items. Several factors were manipulated to observe their effect on the equilibrium G. For 

example (first row in Table 1), for a test with 20 items, average item difficulty of 40%, five 

choices per item, and average interitem correlation of .04, the coefficient alpha will be .45. If a 

new item is added to this test and the guessing rate is .55 or higher then the new coefficient alpha 

will be equal or lower than the original alpha of .45.  

The table shows that the most influential factor is the average difficulty of test items—the 

difference in the equilibrium G between difficult tests (.40) and easy tests (.70) was 13%–15% 

with easy tests having higher G values. The second most influential factor was average item 

correlations—the difference in equilibrium G between low item correlations (.04) and high item 

correlations (.16) was 6%–7%, with low correlations having higher equilibrium G values. Both 

number of items and the number of choices per item had small effects on G.  
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Except for very difficult test items and very low item correlations (and reliabilities), 

equilibrium G did not exceed 50%. For a reasonably difficult test of .6, average interitem 

correlations of .12–.16, with 20–50 items, and a pg of .20 or .25, the equilibrium G is .41–.44.  

 

Table 1 

Guessing Rate G of the n+1 Item Needed to Achieve Unchanged Alpha 

Statistics for the test with n items  

Number 
of items 

Average 
difficulty (pi) 

Number 
of choices 

Percentage 
correct in 

guessing (pg) Average ρij αN Equilibrium G
20 .4 5 .20 .04 .45 .55 
50 .4 4 .25 .16 .90 .46 
20 .5 5 .20 .04 .45 .53 
50 .5 4 .25 .16 .90 .45 
20 .6 5 .20 .04 .45 .48 
50 .6 4 .25 .16 .90 .41 
20 .7 5 .20 .04 .45 .40 
50 .7 4 .25 .16 .90 .34 

 

The Effect of Speed Consistency on Alternate-form Reliability 

The preceding discussion focused on internal consistency measures of reliability. With 

respect to alternate-form reliability, there are two different sources for the decrease of reliability 

due to the speed factor. In addition to the noise that is introduced to scores of each form as a 

result of guessing, the inconsistency in examinee response speed across different forms can 

lower the alternate-form reliability beyond the random guessing factor. If the reliability of 

response speed is perfect, that is, examinees complete the same number of items on both forms, 

then internal consistency measures of reliability will accurately estimate alternate-form 

reliability. But in the case of less than perfect speed consistency, the alternate-form reliability 

will be lower than single-form estimates. This effect will be demonstrated with a simulation.  

The simulation was designed to show the effect of speed consistency on alternate-form 

reliability and its relation to internal consistency reliability. Setting the correlation between 

completion rates on two equivalent test forms operationalized speed consistency. Each simulated 

examinee was given two test forms composed of 50 equal-difficulty five-choice items drawn 

from a large pool of items. For each simulated examinee, a true score was defined as the 
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proportion of items in the pool that the examinee can answer correctly. The true score of 100,000 

examinees was sampled from a logit-normal distribution that was based on a normal distribution 

with parameters µ = 0 and σ = .7 (the logit-normal transformation is [1 + exp(x)]-1). The mean of 

this distribution is .5, its standard deviation is approximately .16, and its shape is similar to the 

shape of a normal distribution with the same mean and standard deviation, except that its values 

are restricted to the [0,1] range. The range of this distribution was covered by setting the true 

score of the ith examinee to be the (i - .5) / 1000 percentile of the distribution. The choice of the 

logit-normal distribution for the true score (and other) distributions was motivated by the ease of 

simulating such bivariate distributions with specified correlations.  

In addition to the true score of each examinee, the simulation randomly determined the 

percentage of completed items for the two forms from a logit-normal distribution that was based 

on a normal distribution with parameters µ = -2.5 and σ = 1.0. This is a skewed distribution with 

an approximate mean of .90 and a standard deviation of .10, so that we can expect on average a 

90% completion rate (after the value of the completion rate was set it was rounded to the nearest 

number of items). Figure 2 shows the distribution of completed items.  

The percentage of completed items for the second form was randomly determined from a 

preset correlation value between completion rates and the distribution of completion rates 

conditioned on the first form completion rate (Johnson, 1987). 

For each examinee the first items of each 50-item form were completed and the last items 

were randomly guessed. For each of the completed items, the correctness of the examinee’s 

response was randomly determined by generating a Bernoulli trial with the true score of the 

examinee as the probability of success. For each of the uncompleted items the correctness of the 

examinee’s response was randomly determined by generating a Bernoulli trial with 20% (one 

over the number of options) as the probability of success.  

As a reference point, the results of this simulation should be compared to the values of 

Cronbach alpha and alternate form reliability for completely unspeeded tests. These values were 

obtained in a separate simulation (where all items were completed by all examinees) and both 

were equal to .847.  
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Figure 2. Percentage of completed items from the logit-normal distribution based on 

parameters µ = -2.5 and σ = 1.0. 

 

Table 2 shows the Cronbach alpha (for the first form) and the alternate form score 

correlation as a function of speed consistency. As expected, the internal consistency reliability 

estimate was not affected by the speed consistency and its value was around .824 for all 

correlation values between completed items. Applying the Spearman-Brown formula to the 

speeded and unspeeded coefficient alpha values reveals that this decrease in reliability, compared 

to the value for the unspeeded 50-item test (.847), corresponds to about 8 items in test length. 

However, as expected, Table 2 also shows that the alternate form reliability is lowered even 

further when speed consistency decreases. This decrease is significant—from an estimated 

number of 44 unspeeded items to 33 items.  

These results show that, although internal consistency measures of reliability for speeded 

MC tests reflect the decrease in internal consistency due to noise introduced by guessing, they do 

not reflect the further decline in reliability that results from the inconsistency of this noise across 

occasions.  
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Table 2 

Internal Consistency and Alternate Form Reliability as a Function of Speed Consistency 

Correlation 
between 

completed 
items 

Cronbach 
alpha for 
first form 

Alternate 
form 

correlation 

No. of unspeeded 
items with same 
alternate form 

correlation 
1.0 .824 .829 44 
0.8 .823 .820 41 
0.6 .824 .808 38 
0.4 .823 .801 36 
0.2 .823 .795 35 
0.0 .824 .787 33 

 

Relation Between Speed and Performance and the Effect of Speededness on Reliability 

The preceding discussion assumes that there is no relation between individual speed 

and performance on the test. This standard assumption for power tests may not hold in reality; 

however, past research on this issue generally found that, in tests that require reasoning, the 

correlation between response time and performance is typically positive (for a review, see 

Schnipke & Scrams, 2002). Scrams and Schnipke (1997), for example, found that higher-

ability examinees on the GRE® General Test (a nonadaptive computerized version) took more 

time to respond than low-ability examinees for the verbal- and quantitative-reasoning subtests 

(r2 = .39 and .33, respectively, for the relation between estimated ability and slowness 

examinee parameters) and no relation was found for the analytical subtest (r2 = .00). This state 

of affairs (positive speed-performance correlations) will translate into larger effects of 

speededness on test reliability, because higher ability examinees will tend to experience more 

time-related pressure, they will be forced to guess the answers of more items, and thus the 

noise due to the speededness factor will reduce the differences in ability between examinees. 

Negative correlations between response speed and performance will have an opposite influence 

and may cancel the effects of speededness on reliability that were shown above.  

The following simulation examined the sensitivity of the previous results to positive 

correlations between performance on the test and number of items completed. The simulation was 

similar to the one described in the previous section, except that after the true score for the 

performance of the examinee was generated, a true score for the percentage of completed items 
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was randomly determined from a preset correlation value between true score completion rates and 

true score performance rates. This correlation determined the degree of relation between speed and 

performance. Then the actual completion rates for the two forms were randomly generated from 

the true completion rate based on a relatively high completion rate reliability of .8. 

Table 3 presents the results of this simulation for true performance-completion 

correlations between .0 and .6 (a positive correlation between performance and completion rate 

corresponds to a negative correlation between performance and response speed). As in the 

previous simulation, the results in Table 3 should be compared to the .847 reliability of the 

unspeeded test (where all examinees complete all items). The table shows that positive 

correlations (corresponding to negative correlations between performance and speed) indeed 

result in higher reliabilities compared to the case of zero speed-performance correlation; 

however, even for a relatively high correlation of .6, the reliabilities did not reach the original 

.847 reliability of the unspeeded test.  

 

Table 3 

Internal Consistency and Alternate Form Reliability as a Function the Correlation Between 

True Performance and True Completion Rate (With Completion Reliability of .8) 

Correlation between 
true performance and 
true completion rate 

Cronbach alpha 
for first form 

Alternate form 
correlation 

0.6 .844 .841 
0.4 .839 .834 
0.2 .833 .825 
0.0 .823 .814 

 

Conclusion 

The purpose of this paper is to show that, in MC tests that do not penalize guessing, 

reliability measures are lowered by speededness in the tests. Because the examinees who run out 

of time guess the remaining answers instead of omitting them, the speededness produces noise in 

examinees’ responses, lowering the reliability of the test.  

The amount of random guessing in an item is associated with the item’s correlation with 

scores for another item or a test (and, particularly, with the item’s point-biserial). Furthermore, 
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when an item is added to a test and no more than one-half of the examinees will have enough 

time to solve it, the internal consistency reliability of the test is likely to decrease. The surprising 

implication is that it is possible to reduce the number of items in a speeded MC test and still 

retain the same level of reliability or even increase reliability. The effects of speededness on 

alternate-form reliability depend in addition on the reliability of examinees’ response speed 

across test forms. When examinees do not complete the same number of items on different 

forms, the alternate-form reliability may be lower than internal consistency reliability for a single 

form. Even when there is a positive correlation between performance and completion rate the 

reduction in reliability associated with speededness is not completely erased.  

In conclusion, this paper shows that the presence of speededness on multiple-choice tests 

has adverse consequences for their psychometric properties. 
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